Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
2.
Phytopathology ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669464

RESUMO

Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut (Arachis hypogaea) has been a focus of molecular breeding for the U.S. industry funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombination and marker density available in traditional biparental mapping populations. To address this, a multi-parental nested association mapping (NAM) population has been genotyped with the peanut 58 K SNP array and phenotyped for LLS severity in the field for three years. Joint linkage-based QTL mapping identified nine QTLs for LLS resistance with significant phenotypic variance explained (PVE) up to 47.7%. A genome-wide association study (GWAS) identified 13 SNPs consistently associated with LLS resistance. Two genomic regions harboring the consistent QTLs and SNPs were identified from 1,336 Kb to 1,520 Kb (184 Kb) on chromosome B02 and from 1,026.9 Kb to 1,793.2 Kb (767 Kb) on chromosome B03, designated as peanut late leaf spot resistance loci, PLLSR-1 and PLLSR-2, respectively. PLLSR-1 contains 10 NBS-LRR disease resistant genes. An NBS-LRR disease resistance gene Arahy.VKVT6A was also identified on homoeologous chromosome A02. PLLSR-2 contains five significant SNPs associated with five different genes encoding callose synthase, pollen defective in guidance protein, pentatricopeptide repeat (PPR), acyl-activating enzyme, and C2 GRAM domains-containing protein. This study highlights the power of multi-parent populations such as NAM for genetic mapping and marker-trait association studies in peanuts. Validation of these two LLS resistance loci will be needed for marker-assisted breeding.

3.
BMJ ; 384: e078581, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443074

RESUMO

OBJECTIVE: To evaluate the diagnostic accuracy and safety of using magnetically guided capsule endoscopy with a detachable string (ds-MCE) for detecting and grading oesophagogastric varices in adults with cirrhosis. DESIGN: Prospective multicentre diagnostic accuracy study. SETTING: 14 medical centres in China. PARTICIPANTS: 607 adults (>18 years) with cirrhosis recruited between 7 January 2021 and 25 August 2022. Participants underwent ds-MCE (index test), followed by oesophagogastroduodenoscopy (OGD, reference test) within 48 hours. The participants were divided into development and validation cohorts in a ratio of 2:1. MAIN OUTCOME MEASURES: The primary outcomes were the sensitivity and specificity of ds-MCE in detecting oesophagogastric varices compared with OGD. Secondary outcomes included the sensitivity and specificity of ds-MCE for detecting high risk oesophageal varices and the diagnostic accuracy of ds-MCE for detecting high risk oesophagogastric varices, oesophageal varices, and gastric varices. RESULTS: ds-MCE and OGD examinations were completed in 582 (95.9%) of the 607 participants. Using OGD as the reference standard, ds-MCE had a sensitivity of 97.5% (95% confidence interval 95.5% to 98.7%) and specificity of 97.8% (94.4% to 99.1%) for detecting oesophagogastric varices (both P<0.001 compared with a prespecified 85% threshold). When using the optimal 18% threshold for luminal circumference of the oesophagus derived from the development cohort (n=393), the sensitivity and specificity of ds-MCE for detecting high risk oesophageal varices in the validation cohort (n=189) were 95.8% (89.7% to 98.4%) and 94.7% (88.2% to 97.7%), respectively. The diagnostic accuracy of ds-MCE for detecting high risk oesophagogastric varices, oesophageal varices, and gastric varices was 96.3% (92.6% to 98.2%), 96.9% (95.2% to 98.0%), and 96.7% (95.0% to 97.9%), respectively. Two serious adverse events occurred with OGD but none with ds-MCE. CONCLUSION: The findings of this study suggest that ds-MCE is a highly accurate and safe diagnostic tool for detecting and grading oesophagogastric varices and is a promising alternative to OGD for screening and surveillance of oesophagogastric varices in patients with cirrhosis. TRIAL REGISTRATION: ClinicalTrials.gov NCT03748563.


Assuntos
Endoscopia por Cápsula , Varizes Esofágicas e Gástricas , Varizes , Adulto , Humanos , Varizes Esofágicas e Gástricas/diagnóstico , Varizes Esofágicas e Gástricas/etiologia , Cirrose Hepática/complicações , Estudos Prospectivos
4.
Cancer Immunol Immunother ; 73(5): 84, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554155

RESUMO

This study aims to investigate the diagnostic potential of IL-2 for PDAC and develop a method to improve the dendritic cell (DC) based vaccine against PDAC. The gene expression data and clinical characteristics information for 178 patients with PDAC were obtained from The Cancer Genome Atlas (TCGA). DCs were isolated from Human peripheral blood mononuclear cells (PBMCs) and were cultured in 4 different conditions. DCs were pulsed by tumor cell lysates or KRAS G12D1 - 23 peptide, and then used to activate T cells. The mixture of DCs and T cells were administered to xenograft mouse model through the tail vein. The infiltration of DCs and T cells were detected by immunohistochemistry. The generation of KRAS G12D mutation specific cytotoxic T cells was determined by in vitro killing assay. We observed that PDAC patients with higher IL-2 mRNA levels exhibited improved overall survival and increased infiltration of CD8 + T cells, NK cells, naïve B cells, and resting myeloid DCs in the tumor microenvironment. IL-2 alone did not enhance DC proliferation, antigen uptake, or apoptosis inhibition unless co-cultured with PBMCs. DCs co-cultured with PBMCs in IL-2-containing medium demonstrated the strongest tumor repression effect in vitro and in vivo. Compared to DCs obtained through the traditional method (cultured in medium containing GM-CSF and IL-4), DCs cultured with PBMCs, and IL-2 exhibited increased tumor infiltration capacity, potentially facilitating sustained T cell immunity. DCs cultured in the PBMCs-IL-2 condition could promote the generation of cytotoxic T cells targeting tumor cells carrying KRAS G12D mutation.


Assuntos
Interleucina-2 , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Interleucina-2/metabolismo , Células Dendríticas , Leucócitos Mononucleares , Proteínas Proto-Oncogênicas p21(ras)/genética , Linfócitos T Citotóxicos , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral
6.
G3 (Bethesda) ; 14(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37875136

RESUMO

Cultivated peanut or groundnut (Arachis hypogaea L.) is a grain legume grown in many developing countries by smallholder farmers for food, feed, and/or income. The speciation of the cultivated species, that involved polyploidization followed by domestication, greatly reduced its variability at the DNA level. Mobilizing peanut diversity is a prerequisite for any breeding program for overcoming the main constraints that plague production and for increasing yield in farmer fields. In this study, the Groundnut Improvement Network for Africa assembled a collection of 1,049 peanut breeding lines, varieties, and landraces from 9 countries in Africa. The collection was genotyped with the Axiom_Arachis2 48K SNP array and 8,229 polymorphic single nucleotide polymorphism (SNP) markers were used to analyze the genetic structure of this collection and quantify the level of genetic diversity in each breeding program. A supervised model was developed using dapc to unambiguously assign 542, 35, and 172 genotypes to the Spanish, Valencia, and Virginia market types, respectively. Distance-based clustering of the collection showed a clear grouping structure according to subspecies and market types, with 73% of the genotypes classified as fastigiata and 27% as hypogaea subspecies. Using STRUCTURE, the global structuration was confirmed and showed that, at a minimum membership of 0.8, 76% of the varieties that were not assigned by dapc were actually admixed. This was particularly the case of most of the genotype of the Valencia subgroup that exhibited admixed genetic heritage. The results also showed that the geographic origin (i.e. East, Southern, and West Africa) did not strongly explain the genetic structure. The gene diversity managed by each breeding program, measured by the expected heterozygosity, ranged from 0.25 to 0.39, with the Niger breeding program having the lowest diversity mainly because only lines that belong to the fastigiata subspecies are used in this program. Finally, we developed a core collection composed of 300 accessions based on breeding traits and genetic diversity. This collection, which is composed of 205 genotypes of fastigiata subspecies (158 Spanish and 47 Valencia) and 95 genotypes of hypogaea subspecies (all Virginia), improves the genetic diversity of each individual breeding program and is, therefore, a unique resource for allele mining and breeding.


Assuntos
Variação Genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Arachis/genética , África , Estudos de Associação Genética
7.
J Dig Dis ; 24(2): 70-84, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37220999

RESUMO

With the development and generalization of endoscopic technology and screening, clinical application of magnetically controlled capsule gastroscopy (MCCG) has been increasing. In recent years, various types of MCCG are used globally. Therefore, establishing relevant guidelines on MCCG is of great significance. The current guidelines containing 23 statements were established based on clinical evidence and expert opinions, mainly focus on aspects including definition and diagnostic accuracy, application population, technical optimization, inspection process, and quality control of MCCG. The level of evidence and strength of recommendations were evaluated. The guidelines are expected to guide the standardized application and scientific innovation of MCCG for the reference of clinicians.


Assuntos
Gastroscopia , Humanos , Gastroscopia/métodos , Magnetismo
8.
World J Gastroenterol ; 29(5): 879-889, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36816625

RESUMO

BACKGROUND: Small intestinal vascular malformations (angiodysplasias) are common causes of small intestinal bleeding. While capsule endoscopy has become the primary diagnostic method for angiodysplasia, manual reading of the entire gastrointestinal tract is time-consuming and requires a heavy workload, which affects the accuracy of diagnosis. AIM: To evaluate whether artificial intelligence can assist the diagnosis and increase the detection rate of angiodysplasias in the small intestine, achieve automatic disease detection, and shorten the capsule endoscopy (CE) reading time. METHODS: A convolutional neural network semantic segmentation model with a feature fusion method, which automatically recognizes the category of vascular dysplasia under CE and draws the lesion contour, thus improving the efficiency and accuracy of identifying small intestinal vascular malformation lesions, was proposed. Resnet-50 was used as the skeleton network to design the fusion mechanism, fuse the shallow and depth features, and classify the images at the pixel level to achieve the segmentation and recognition of vascular dysplasia. The training set and test set were constructed and compared with PSPNet, Deeplab3+, and UperNet. RESULTS: The test set constructed in the study achieved satisfactory results, where pixel accuracy was 99%, mean intersection over union was 0.69, negative predictive value was 98.74%, and positive predictive value was 94.27%. The model parameter was 46.38 M, the float calculation was 467.2 G, and the time length to segment and recognize a picture was 0.6 s. CONCLUSION: Constructing a segmentation network based on deep learning to segment and recognize angiodysplasias lesions is an effective and feasible method for diagnosing angiodysplasias lesions.


Assuntos
Angiodisplasia , Endoscopia por Cápsula , Humanos , Endoscopia por Cápsula/métodos , Inteligência Artificial , Redes Neurais de Computação , Valor Preditivo dos Testes , Angiodisplasia/diagnóstico
9.
Sci Rep ; 12(1): 15267, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088406

RESUMO

'Runner' and 'Virginia', the two main market types of Arachis hypogaea subspecies hypogaea, differ in several agricultural and industrial characteristics. One such trait is time to maturation (TTM), contributing to the specific environmental adaptability of each subspecies. However, little is known regarding TTM's genetic and molecular control in peanut in general, and particularly in the Runner/Virginia background. Here, a recombinant inbred line population, originating from a cross between an early-maturing Virginia and a late-maturing Runner type, was used to detect quantitative trait loci (QTL) for maturity. An Arachis SNP-array was used for genotyping, and a genetic map with 1425 SNP loci spanning 24 linkage groups was constructed. Six significant QTLs were identified for the maturity index (MI) trait on chromosomes A04, A08, B02 and B04. Two sets of stable QTLs in the same loci were identified, namely qMIA04a,b and qMIA08_2a,b with 11.5%, 8.1% and 7.3%, 8.2% of phenotypic variation explained respectively in two environments. Interestingly, one consistent QTL, qMIA04a,b, overlapped with the previously reported QTL in a Virginia × Virginia population having the same early-maturing parent ('Harari') in common. The information and materials generated here can promote informed targeting of peanut idiotypes by indirect marker-assisted selection.


Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , Mapeamento Cromossômico , Ligação Genética , Fenótipo , Locos de Características Quantitativas/genética
10.
Int J Endocrinol ; 2022: 6556252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465074

RESUMO

Objective: How to preserve the inferior parathyroid gland (IPTG) in situ during central neck dissection (CND) is the major concern of thyroid surgeons. The "layer of thymus-blood vessel-IPTG" (TBP layer) concept showed to be effective in preserving IPTG. The objective of this study was to identify the origin and course of blood supply to IPTG (IPBS) within the TBP layer and to take key points of operation during CND. Design: This is a retrospective control study. Participants. Patients who underwent thyroidectomy plus CND using the TBP layer concept and conventional technique between 2017 and 2019 were enrolled. Measurements. The origin and course of IPBS in relation to recurrent laryngeal nerve (RLN) and thymus and prevalence of hypoparathyroidism were detected. Results: A total of 71.3% of IPTGs (251 of 352) were supplied by ITA branches, defined as type A. Type A was further divided into Types A1 (branches of ITA, coursing laterally to the RLN (53.1%, 187 of 352)) and A2 (branches of ITA, traversing medially to the RLN (18.2%, 64 of 352)). Type A2 was more common on the right side than on the left side (P < 0.001). Fifty-five (15.6%) IPTG feeding vessels originated from the thymus or mediastinum. Nineteen (5.4%) IPTGs were supplied by branches of the superior thyroid artery. The incidence of transient hypoparathyroidism decreased from 45.7% to 3.6% (P < 0.001), in the TBP layer group compared with the conventional technique group. Conclusion: The origin and course of IPBS follow a definite pattern. This mapping and precautions help surgeons optimize intraoperative manipulations for better preservation of IPBS during CND.

11.
Theor Appl Genet ; 135(5): 1767-1777, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35260930

RESUMO

KEY MESSAGE: A major gene controls flowering pattern in peanut, possibly encoding a TFL1-like. It was subjected to gain/loss events of a deletion and changes in mRNA expression levels, partly explaining the evolution of flowering pattern in Arachis. Flowering pattern (FP) is a major characteristic differentiating the two subspecies of cultivated peanut (Arachis hypogaea L.). Subsp. fastigiata possessing flowers on the mainstem (MSF) and a sequential FP, whereas subsp. hypogaea lacks MSF and exhibits an alternate FP. FP is considered the main contributor to plant adaptability, and evidence indicates that its diversification occurred during the several thousand years of domestication. However, the genetic mechanism that controls FP in peanut is unknown. We investigated the genetics of FP in a recombinant inbred population, derivatives of an A. hypogaea by A. fastigiata cross. Lines segregated 1:1 for FP, indicating a single gene effect. Using Axiom_Arachis2 SNP-array, FP was mapped to a small segment in chromosome B02, wherein a Terminal Flowering 1-like (AhTFL1) gene with a 1492 bp deletion was found in the fastigiata line, leading to a truncated protein. Remapping FP in the RIL population with the AhTFL1 indel as a marker increased the LOD score from 53.3 to 158.8 with no recombination in the RIL population. The same indel was found co-segregating with the phenotype in two independent EMS-mutagenized M2 families, suggesting a hotspot for gene conversion. Also, AhTFL1 was significantly less expressed in the fastigiata line compared to hypogaea and in flowering than non-flowering branches. Sequence analysis of the AhTFL1 in peanut world collections indicated significant conservation, supporting the putative role of AhTFL1 in peanut speciation during domestication and modern cultivation.


Assuntos
Arachis , Arachis/genética , Genoma de Planta , Mutação INDEL , Fenótipo
12.
Gastroenterol Res Pract ; 2021: 6934594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675973

RESUMO

BACKGROUND AND AIMS: Screening for gastric diseases in symptomatic outpatients with conventional esophagogastroduodenoscopy (C-EGD) is expensive and has poor compliance. We aimed to explore the efficiency and safety of magnetic-controlled capsule gastroscopy (MCCG) in symptomatic outpatients who refused C-EGD. METHODS: We performed a retrospective study of 76794 consecutive symptomatic outpatients from January 2014 to October 2019. A total of 2318 adults (F/M = 1064/1254) in the MCCG group who refused C-EGD were matched with adults in the C-EGD group using propensity-score matching (PSM). The detection rates of abnormalities were analyzed to explore the application of MCCG in symptomatic patients. RESULTS: Our study demonstrated a prevalence of gastric ulcers (GUs) in patients with functional dyspepsia- (FD-) like symptoms of 8.14%. The detection rate of esophagitis and Barrett's esophagus was higher in patients with typical gastroesophageal reflux disease (GERD) symptoms than in patients in the other four groups (P < 0.01). The detection rates of gastric ulcers in the five groups (abdominal pain, bloating, heartburn, follow-up, and bleeding) were significantly different (P = 0.015). The total detection rate of gastric ulcers in symptomatic patients was 9.7%. A total of 7 advanced carcinomas were detected by MCCG and confirmed by endoscopic or surgical biopsy. The advanced gastric cancer detection rate was not significantly different between the MCCG group and the C-EGD matched group in terms of nonhematemesis GI bleeding (2 vs. 2, P = 1.00). In addition, the overall focal lesion detection rate in the MCCG group was superior to that in the C-EGD matched group (224 vs. 184, P = 0.038). MCCG gained a clinically meaningful small bowel diagnostic yield of 54.8% (17/31) out of 31 cases of suspected small bowel bleeding. No patient reported capsule retention at the two-week follow-up. CONCLUSION: MCCG is well tolerated, safe, and technically feasible and has a considerable diagnostic yield. The overall gastric diagnostic yield of gastric focal lesions with MCCG was comparable to that with C-EGD. MCCG offered a supplementary diagnosis in patients who had a previously undiagnostic C-EGD, indicating that MCCG could play an important role in the routine monitoring and follow-up of outpatient. MCCG shows its safety and efficiency in symptomatic outpatient applications.

13.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34518223

RESUMO

The narrow genetics of most crops is a fundamental vulnerability to food security. This makes wild crop relatives a strategic resource of genetic diversity that can be used for crop improvement and adaptation to new agricultural challenges. Here, we uncover the contribution of one wild species accession, Arachis cardenasii GKP 10017, to the peanut crop (Arachis hypogaea) that was initiated by complex hybridizations in the 1960s and propagated by international seed exchange. However, until this study, the global scale of the dispersal of genetic contributions from this wild accession had been obscured by the multiple germplasm transfers, breeding cycles, and unrecorded genetic mixing between lineages that had occurred over the years. By genetic analysis and pedigree research, we identified A. cardenasii-enhanced, disease-resistant cultivars in Africa, Asia, Oceania, and the Americas. These cultivars provide widespread improved food security and environmental and economic benefits. This study emphasizes the importance of wild species and collaborative networks of international expertise for crop improvement. However, it also highlights the consequences of the implementation of a patchwork of restrictive national laws and sea changes in attitudes regarding germplasm that followed in the wake of the Convention on Biological Diversity. Today, the botanical collections and multiple seed exchanges which enable benefits such as those revealed by this study are drastically reduced. The research reported here underscores the vital importance of ready access to germplasm in ensuring long-term world food security.


Assuntos
Arachis/genética , Produtos Agrícolas/genética , Sementes/genética , África , Ásia , Mapeamento Cromossômico/métodos , DNA de Plantas/genética , Marcadores Genéticos/genética , Variação Genética/genética , Genoma de Planta/genética , Hibridização Genética/genética , Oceania , Melhoramento Vegetal/métodos , Especificidade da Espécie
14.
Front Plant Sci ; 12: 645291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995444

RESUMO

Cultivated peanut (Arachis hypogaea) is one of the most widely grown food legumes in the world, being valued for its high protein and unsaturated oil contents. Drought stress is one of the major constraints that limit peanut production. This study's objective was to identify the drought-responsive genes preferentially expressed under drought stress in different peanut genotypes. To accomplish this, four genotypes (drought tolerant: C76-16 and 587; drought susceptible: Tifrunner and 506) subjected to drought stress in a rainout shelter experiment were examined. Transcriptome sequencing analysis identified that all four genotypes shared a total of 2,457 differentially expressed genes (DEGs). A total of 139 enriched gene ontology terms consisting of 86 biological processes and 53 molecular functions, with defense response, reproductive process, and signaling pathways, were significantly enriched in the common DEGs. In addition, 3,576 DEGs were identified only in drought-tolerant lines in which a total of 74 gene ontology terms were identified, including 55 biological processes and 19 molecular functions, mainly related to protein modification process, pollination, and metabolic process. These terms were also found in shared genes in four genotypes, indicating that tolerant lines adjusted more related genes to respond to drought. Forty-three significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways were also identified, and the most enriched pathways were those processes involved in metabolic pathways, biosynthesis of secondary metabolites, plant circadian rhythm, phenylpropanoid biosynthesis, and starch and sucrose metabolism. This research expands our current understanding of the mechanisms that facilitate peanut drought tolerance and shed light on breeding advanced peanut lines to combat drought stress.

15.
BMC Plant Biol ; 21(1): 186, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874903

RESUMO

BACKGROUND: Time-to-maturation (TTM) is an important trait contributing to adaptability, yield and quality in peanut (Arachis hypogaea L). Virginia market-type peanut belongs to the late-maturing A. hypogaea subspecies with considerable variation in TTM within this market type. Consequently, planting and harvesting schedule of peanut cultivars, including Virginia market-type, need to be optimized to maximize yield and grade. Little is known regarding the genetic control of TTM in peanut due to the challenge of phenotyping and limited DNA polymorphism. Here, we investigated the genetic control of TTM within the Virginia market-type peanut using a SNP-based high-density genetic map. A recombinant inbred line (RIL) population, derived from a cross between two Virginia-type cultivars 'Hanoch' and 'Harari' with contrasting TTM (12-15 days on multi-years observations), was phenotyped in the field for 2 years following a randomized complete block design. TTM was estimated by maturity index (MI). Other agronomic traits like harvest index (HI), branching habit (BH) and shelling percentage (SP) were recorded as well. RESULTS: MI was highly segregated in the population, with 13.3-70.9% and 28.4-80.2% in years 2018 and 2019. The constructed genetic map included 1833 SNP markers distributed on 24 linkage groups, covering a total map distance of 1773.5 cM corresponding to 20 chromosomes on the tetraploid peanut genome with 1.6 cM mean distance between the adjacent markers. Thirty QTL were identified for all measured traits. Among the four QTL regions for MI, two consistent QTL regions (qMIA04a,b and qMIB03a,b) were identified on chromosomes A04 (118680323-125,599,371; 6.9Mbp) and B03 (2839591-4,674,238; 1.8Mbp), with LOD values of 5.33-6.45 and 5-5.35 which explained phenotypic variation of 9.9-11.9% and 9.3-9.9%, respectively. QTL for HI were found to share the same loci as MI on chromosomes B03, B05, and B06, demonstrating the possible pleiotropic effect of HI on TTM. Significant but smaller effects on MI were detected for BH, pod yield and SP. CONCLUSIONS: This study identified consistent QTL regions conditioning TTM for Virginia market-type peanut. The information and materials generated here can be used to further develop molecular markers to select peanut idiotypes suitable for diverse growth environments.


Assuntos
Arachis/crescimento & desenvolvimento , Arachis/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/fisiologia , Ligação Genética , Fenótipo
16.
G3 (Bethesda) ; 11(4)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33693764

RESUMO

Genome instability in newly synthesized allotetraploids of peanut has breeding implications that have not been fully appreciated. Synthesis of wild species-derived neo-tetraploids offers the opportunity to broaden the gene pool of peanut; however, the dynamics among the newly merged genomes creates predictable and unpredictable variation. Selfed progenies from the neo-tetraploid Arachis ipaënsis × Arachis correntina (A. ipaënsis × A. correntina)4x and F1 hybrids and F2 progenies from crosses between A. hypogaea × [A. ipaënsis × A. correntina]4x were genotyped by the Axiom Arachis 48 K SNP array. Homoeologous recombination between the A. ipaënsis and A. correntina derived subgenomes was observed in the S0 generation. Among the S1 progenies, these recombined segments segregated and new events of homoeologous recombination emerged. The genomic regions undergoing homoeologous recombination segregated mostly disomically in the F2 progenies from A. hypogaea × [A. ipaënsis × A. correntina]4x crosses. New homoeologous recombination events also occurred in the F2 population, mostly found on chromosomes 03, 04, 05, and 06. From the breeding perspective, these phenomena offer both possibilities and perils; recombination between genomes increases genetic diversity, but genome instability could lead to instability of traits or even loss of viability within lineages.


Assuntos
Arachis , Fabaceae , Arachis/genética , Fabaceae/genética , Genoma de Planta , Melhoramento Vegetal , Recombinação Genética
17.
Front Plant Sci ; 12: 785358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111175

RESUMO

Crop wild species are increasingly important for crop improvement. Peanut (Arachis hypogaea L.) wild relatives comprise a diverse genetic pool that is being used to broaden its narrow genetic base. Peanut is an allotetraploid species extremely susceptible to peanut root-knot nematode (PRKN) Meloidogyne arenaria. Current resistant cultivars rely on a single introgression for PRKN resistance incorporated from the wild relative Arachis cardenasii, which could be overcome as a result of the emergence of virulent nematode populations. Therefore, new sources of resistance may be needed. Near-immunity has been found in the peanut wild relative Arachis stenosperma. The two loci controlling the resistance, present on chromosomes A02 and A09, have been validated in tetraploid lines and have been shown to reduce nematode reproduction by up to 98%. To incorporate these new resistance QTL into cultivated peanut, we used a marker-assisted backcrossing approach, using PRKN A. stenosperma-derived resistant lines as donor parents. Four cycles of backcrossing were completed, and SNP assays linked to the QTL were used for foreground selection. In each backcross generation seed weight, length, and width were measured, and based on a statistical analysis we observed that only one generation of backcrossing was required to recover the elite peanut's seed size. A populating of 271 BC3F1 lines was genome-wide genotyped to characterize the introgressions across the genome. Phenotypic information for leaf spot incidence and domestication traits (seed size, fertility, plant architecture, and flower color) were recorded. Correlations between the wild introgressions in different chromosomes and the phenotypic data allowed us to identify candidate regions controlling these domestication traits. Finally, PRKN resistance was validated in BC3F3 lines. We observed that the QTL in A02 and/or large introgression in A09 are needed for resistance. This present work represents an important step toward the development of new high-yielding and nematode-resistant peanut cultivars.

18.
G3 (Bethesda) ; 10(11): 4013-4026, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32887672

RESUMO

Cultivated peanut (Arachis hypogaea) is an important oil, food, and feed crop worldwide. The USDA peanut germplasm collection currently contains 8,982 accessions. In the 1990s, 812 accessions were selected as a core collection on the basis of phenotype and country of origin. The present study reports genotyping results for the entire available core collection. Each accession was genotyped with the Arachis_Axiom2 SNP array, yielding 14,430 high-quality, informative SNPs across the collection. Additionally, a subset of 253 accessions was replicated, using between two and five seeds per accession, to assess heterogeneity within these accessions. The genotypic diversity of the core is mostly captured in five genotypic clusters, which have some correspondence with botanical variety and market type. There is little genetic clustering by country of origin, reflecting peanut's rapid global dispersion in the 18th and 19th centuries. A genetic cluster associated with the hypogaea/aequatoriana/peruviana varieties, with accessions coming primarily from Bolivia, Peru, and Ecuador, is consistent with these having been the earliest landraces. The genetics, phenotypic characteristics, and biogeography are all consistent with previous reports of tetraploid peanut originating in Southeast Bolivia. Analysis of the genotype data indicates an early genetic radiation, followed by regional distribution of major genetic classes through South America, and then a global dissemination that retains much of the early genetic diversity in peanut. Comparison of the genotypic data relative to alleles from the diploid progenitors also indicates that subgenome exchanges, both large and small, have been major contributors to the genetic diversity in peanut.


Assuntos
Arachis , Variação Genética , Alelos , Arachis/genética , Genótipo , Filogenia
19.
G3 (Bethesda) ; 10(10): 3515-3531, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32817124

RESUMO

Efforts in genome sequencing in the Aspergillus genus have led to the development of quality reference genomes for several important species including A. nidulans, A. fumigatus, and A. oryzae However, less progress has been made for A. flavus As part of the effort of the USDA-ARS Annual Aflatoxin Workshop Fungal Genome Project, the isolate NRRL3357 was sequenced and resulted in a scaffold-level genome released in 2005. Our goal has been biologically driven, focusing on two areas: isolate variation in aflatoxin production and drought stress exacerbating aflatoxin production by A. flavus Therefore, we developed two reference pseudomolecule genome assemblies derived from chromosome arms for two isolates: AF13, a MAT1-2, highly stress tolerant, and highly aflatoxigenic isolate; and NRRL3357, a MAT1-1, less stress tolerant, and moderate aflatoxin producer in comparison to AF13. Here, we report these two reference-grade assemblies for these isolates through a combination of PacBio long-read sequencing and optical mapping, and coupled them with comparative, functional, and phylogenetic analyses. This analysis resulted in the identification of 153 and 45 unique genes in AF13 and NRRL3357, respectively. We also confirmed the presence of a unique 310 Kb insertion in AF13 containing 60 genes. Analysis of this insertion revealed the presence of a bZIP transcription factor, named atfC, which may contribute to isolate pathogenicity and stress tolerance. Phylogenomic analyses comparing these and other available assemblies also suggest that the species complex of A. flavus is polyphyletic.


Assuntos
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/genética , Sequência de Bases , Genoma Fúngico , Filogenia
20.
G3 (Bethesda) ; 10(7): 2297-2315, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32398236

RESUMO

Although seed and pod traits are important for peanut breeding, little is known about the inheritance of these traits. A recombinant inbred line (RIL) population of 156 lines from a cross of Tifrunner x NC 3033 was genotyped with the Axiom_Arachis1 SNP array and SSRs to generate a genetic map composed of 1524 markers in 29 linkage groups (LG). The genetic positions of markers were compared with their physical positions on the peanut genome to confirm the validity of the linkage map and explore the distribution of recombination and potential chromosomal rearrangements. This linkage map was then used to identify Quantitative Trait Loci (QTL) for seed and pod traits that were phenotyped over three consecutive years for the purpose of developing trait-associated markers for breeding. Forty-nine QTL were identified in 14 LG for seed size index, kernel percentage, seed weight, pod weight, single-kernel, double-kernel, pod area and pod density. Twenty QTL demonstrated phenotypic variance explained (PVE) greater than 10% and eight more than 20%. Of note, seven of the eight major QTL for pod area, pod weight and seed weight (PVE >20% variance) were attributed to NC 3033 and located in a single linkage group, LG B06_1. In contrast, the most consistent QTL for kernel percentage were located on A07/B07 and derived from Tifrunner.


Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , Mapeamento Cromossômico , Ligação Genética , Fenótipo , Melhoramento Vegetal , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA